Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
Cell Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565654
2.
Front Pharmacol ; 15: 1348076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572428

RESUMO

Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.

3.
Front Neurol ; 15: 1376216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606277

RESUMO

Objectives: This study aimed to investigate the efficacy of using a newly formulated magnesium-rich artificial cerebrospinal fluid (MACSF) as an alternative to normal saline (NS) for intraoperative irrigation during aneurysm clipping in improving the prognosis of patients with Aneurysmal subarachnoid hemorrhage (aSAH). Methods: Patients with aSAH who underwent intraoperative irrigation with MACSF or NS during the clipping in the First Affiliated Hospital of Xi 'an Jiaotong University from March 2019 to March 2022 were selected as MACSF group and NS group, respectively. The primary prognostic indicators were the incidence of favorable outcomes (mRS 0-2). The secondary outcome measures included cerebral vasospasm (CVS), mortality, total hospital stay, and intensive care unit (ICU) stay. Safety was evaluated based on the occurrence rates of hypermagnesemia, meningitis, and hydrocephalus. Results: Overall, 34 and 37 patients were enrolled in the MACSF and NS groups, respectively. At 90 days after aSAH onset, the proportion of favorable prognosis in the MACSF group was significantly higher than that in the NS group (p = 0.035). The incidence of CVS within 14 days after surgery was significantly lower in the MACSF group than that in the NS group (p = 0.026). The mortality rate in the MACSF group was significantly lower than in the NS group (p = 0.048). The median lengths of hospital stay (p = 0.008) and ICU stay (p = 0.018) were significantly shorter in the MACSF group than in the NS group. No significant differences were observed in safety measures. Conclusion: Using MACSF as an irrigation fluid for aneurysm clipping can significantly improve the 90-day prognosis of patients with aSAH, which may be related to the reduced incidence of CVS. Clinical trial registration: https://www.clinicaltrials.gov, identifier NCT04358445.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38546992

RESUMO

Variational autoencoders (VAEs) are challenged by the imbalance between representation inference and task fitting caused by surrogate loss. To address this issue, existing methods adjust their balance by directly tuning their coefficients. However, these methods suffer from a tradeoff uncertainty, i.e., nondynamic regulation over iterations and inflexible hyperparameters for learning tasks. Accordingly, we make the first attempt to introduce an evolutionary VAE (eVAE), building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm (VGA) into VAE with variational evolutionary operators, including variational mutation (V-mutation), crossover, and evolution. Its training mechanism synergistically and dynamically addresses and updates the learning tradeoff uncertainty in the evidence lower bound (ELBO) without additional constraints and hyperparameter tuning. Furthermore, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and addresses the premature convergence and random search problem in integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all the disentangled factors with sharp images, and improves image generation quality. eVAE achieves better disentanglement, generation performance, and generation-inference balance than its competitors. Code available at: https://github.com/amasawa/eVAE.

5.
Inflammopharmacology ; 32(2): 1633-1646, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451396

RESUMO

Improving inflammation may serve as useful therapeutic interventions for the hindlimb unloading-induced disuse muscle atrophy. Celecoxib is a selective non-steroidal anti-inflammatory drug. We aimed to determine the role and mechanism of celecoxib in hindlimb unloading-induced disuse muscle atrophy. Celecoxib significantly attenuated the decrease in soleus muscle mass, hindlimb muscle function and the shift from slow- to fast-twitch muscle fibers caused by hindlimb unloading in rats. Importantly, celecoxib inhibited the increased expression of inflammatory factors, macrophage infiltration in damaged soleus muscle. Mechanistically, Celecoxib could significantly reduce oxidative stress and endoplasmic reticulum stress in soleus muscle of unloaded rats. Furthermore, celecoxib inhibited muscle proteolysis by reducing the levels of MAFbx, MuRF1, and autophagy related proteins maybe by inhibiting the activation of pro-inflammatory STAT3 pathway in vivo and in vitro. This study is the first to demonstrate that celecoxib can attenuate disuse muscle atrophy caused by hindlimb unloading via suppressing inflammation, oxidative stress and endoplasmic reticulum stress probably, improving target muscle function and reversing the shift of muscle fiber types by inhibiting STAT3 pathways-mediated inflammatory cascade. This study not only enriches the potential molecular regulatory mechanisms, but also provides new potential therapeutic targets for disuse muscle atrophy.


Assuntos
Elevação dos Membros Posteriores , Atrofia Muscular , Animais , Ratos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Estresse Oxidativo
7.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496557

RESUMO

Embryonic stem cells (ESCs) can self-organize in vitro into developmental patterns with spatial organization and molecular similarity to that of early embryonic stages. This self-organization of ESCs requires transmission of signaling cues, via addition of small molecule chemicals or recombinant proteins, to induce distinct embryonic cellular fates and subsequent assembly into structures that can mimic aspects of early embryonic development. During natural embryonic development, different embryonic cell types co-develop together, where each cell type expresses specific fate-inducing transcription factors through activation of non-coding regulatory elements and interactions with neighboring cells. However, previous studies have not fully explored the possibility of engineering endogenous regulatory elements to shape self-organization of ESCs into spatially-ordered embryo models. Here, we hypothesized that cell-intrinsic activation of a minimum number of such endogenous regulatory elements is sufficient to self-organize ESCs into early embryonic models. Our results show that CRISPR-based activation (CRISPRa) of only two endogenous regulatory elements in the genome of pluripotent stem cells is sufficient to generate embryonic patterns that show spatial and molecular resemblance to that of pre-gastrulation mouse embryonic development. Quantitative single-cell live fluorescent imaging showed that the emergence of spatially-ordered embryonic patterns happens through the intrinsic induction of cell fate that leads to an orchestrated collective cellular motion. Based on these results, we propose a straightforward approach to efficiently form 3D embryo models through intrinsic CRISPRa-based epigenome editing and independent of external signaling cues. CRISPRa-Programmed Embryo Models (CPEMs) show highly consistent composition of major embryonic cell types that are spatially-organized, with nearly 80% of the structures forming an embryonic cavity. Single cell transcriptomics confirmed the presence of main embryonic cell types in CPEMs with transcriptional similarity to pre-gastrulation mouse embryos and revealed novel signaling communication links between different embryonic cell types. Our findings offer a programmable embryo model and demonstrate that minimum intrinsic epigenome editing is sufficient to self-organize ESCs into highly consistent pre-gastrulation embryo models.

8.
Int J Nanomedicine ; 19: 2691-2708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510793

RESUMO

Purpose: Patients afflicted with dry eye disease (DED) experience significant discomfort. The underlying cause of DED is the excessive accumulation of ROS on the ocular surface. Here, we investigated the nitrogen doped-graphene quantum dots (NGQDs), known for their ROS-scavenging capabilities, as a treatment for DED. Methods: NGQDs were prepared by using citric acid and urea as precursors through hydrothermal method. The antioxidant abilities of NGQDs were evaluated through: scavenging the ROS both extracellular and intracellular, regulating the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway of human corneal epithelial cells (HCECs) and their transcription of inflammation related genes. Furthermore, NGQDs were modified by Arg-Gly-Asp-Ser (RGDS) peptides to obtain RGDS@NGQDs. In vivo, both the NGQDs and RGDS@NGQDs were suspended in 0.1% Pluronic F127 (w/v) and delivered as eye drops in the scopolamine hydrobromide-induced DED mouse model. Preclinical efficacy was compared to the healthy and DPBS treated DED mice. Results: These NGQDs demonstrated pronounced antioxidant properties, efficiently neutralizing free radicals and activating the intracellular Nrf2 pathway. In vitro studies revealed that treatment of H2O2-exposed HCECs with NGQDs induced a preservation in cell viability. Additionally, there was a reduction in the transcription of inflammation-associated genes. To prolong the corneal residence time of NGQDs, they were further modified with RGDS peptides and suspended in 0.1% Pluronic F127 (w/v) to create RGDS@NGQDs F127 eye drops. RGDS@NGQDs exhibited superior intracellular antioxidant activity even at low concentrations (10 µg/mL). Subsequent in vivo studies revealed that RGDS@NGQDs F127 eye drops notably mitigated the symptoms of DED mouse model, primarily by reducing ocular ROS levels. Conclusion: Our findings underscore the enhanced antioxidant benefits achieved by modifying GQDs through nitrogen doping and RGDS peptide tethering. Importantly, in a mouse model, our novel eye drops formulation effectively ameliorated DED symptoms, thereby representing a novel therapeutic pathway for DED management.


Assuntos
Síndromes do Olho Seco , Grafite , Polietilenos , Polipropilenos , Pontos Quânticos , Camundongos , Humanos , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Grafite/química , Pontos Quânticos/química , Nitrogênio/química , Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Poloxâmero , Síndromes do Olho Seco/tratamento farmacológico , Inflamação , Soluções Oftálmicas , Peptídeos
9.
Proc Natl Acad Sci U S A ; 121(9): e2311160121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377189

RESUMO

Glioblastomas (GBMs) are the most lethal primary brain tumors with limited survival, even under aggressive treatments. The current therapeutics for GBMs are flawed due to the failure to accurately discriminate between normal proliferating cells and distinctive tumor cells. Mitochondria are essential to GBMs and serve as potential therapeutical targets. Here, we utilize cryo-electron tomography to quantitatively investigate nanoscale details of randomly sampled mitochondria in their native cellular context of GBM cells. Our results show that compared with cancer-free brain cells, GBM cells own more inter-mitochondrial junctions of several types for communications. Furthermore, our tomograms unveil microtubule-dependent mitochondrial nanotunnel-like bridges in the GBM cells as another inter-mitochondrial structure. These quantified inter-mitochondrial features, together with other mitochondria-organelle and intra-mitochondrial ones, are sufficient to distinguish GBM cells from cancer-free brain cells under scrutiny with predictive modeling. Our findings decipher high-resolution inter-mitochondrial structural signatures and provide clues for diagnosis and therapeutic interventions for GBM and other mitochondria-related diseases.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Tomografia com Microscopia Eletrônica , Encéfalo/patologia , Mitocôndrias/patologia
10.
Neuroscience ; 542: 21-32, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38340785

RESUMO

Neuroinflammation is an early event of brain injury after subarachnoid hemorrhage (SAH). Whether the macrophage mediators in resolving inflammation 1 (MaR1) is involved in SAH pathogenesis is unknown. In this study, 205 male Sprague-Dawley rats were subjected to SAH via endovascular perforation in the experimental and control groups. MaR1 was dosed intranasally at 1 h after SAH, with LGR6 siRNA and KG-501, GSK-J4 administered to determine the signaling pathway. Neurobehavioral, histological and biochemical data were obtained from the animal groups with designated treatments. The results showed: (i) The leucine-rich repeat containing G protein-coupled receptor 6 (LGR6) was decreased after SAH and reached to the lowest level at 24 h after SAH. Jumonji d3 (JMJD3) protein levels tended to increase and peaked at 24 h after SAH. LGR6 and JMJD3 expression were co-localized with microglia. (ii) MaR1 administration mitigated short-term neurological deficits, brain edema and long-term neurobehavioral performance after SAH, and attenuated microglial activation and neutrophil infiltration. (iii) Knockdown of LGR6, inhibition of CREB phosphorylation or JMJD3 activity abolished the anti-neuroinflammatory effect of MaR1 on the expression of CREB, CBP, JMJD3, IRF4, IRF5, IL-1ß, IL-6 and IL-10, thus prevented microglial activation and neutrophil infiltration. Together, the results show that MaR1 can activate LGR6 and affect CREB/JMJD3/IRF4 signaling to attenuate neuroinflammation after SAH, pointing to a potential pharmacological utility in this disorder.


Assuntos
Ácidos Docosa-Hexaenoicos , Doenças Neuroinflamatórias , Hemorragia Subaracnóidea , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Transdução de Sinais
11.
Cell ; 187(5): 1278-1295.e20, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38387457

RESUMO

CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.


Assuntos
Engenharia Metabólica , Linfócitos T , Humanos , Perfilação da Expressão Gênica , Engenharia Metabólica/métodos , RNA , Transcriptoma
12.
Acta Biomater ; 177: 486-505, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311197

RESUMO

Bone repair in elderly patients poses a huge challenge due to the age-related progressive decline in regenerative abilities attributed to the senescence of bone marrow stem cells (BMSCs). Bioactive scaffolds have been applied in bone regeneration due to their various biological functions. In this study, we aimed to fabricate functionalized bioactive scaffolds through loading osteoinductive extracellular vesicles (OI-EVs) based on mesoporous bioactive glass (MBG) scaffolds (1010 particles/scaffold) and to investigate its effects on osteogenesis and senescence of BMSCs. The results suggested that OI-EVs upregulate the proliferative and osteogenic capacities of senescent BMSCs. More importantly, The results showed that loading OI-EVs into MBG scaffolds achieved better bone regeneration. Furthermore, OI-EVs and BMSCs RNAs bioinformatics analysis indicated that OI-EVs play roles through transporting pivotal lncRNA acting as a "sponge" to compete with Mob3a for miR-1843a-5p to promote YAP dephosphorylation and nuclear translocation, ultimately resulting in elevated proliferation and osteogenic differentiation and reduced senescence-related phenotypes. Collectively, these results suggested that the OI-EVs lncRNA ceRNA regulatory networks might be the key point for senescent osteogenesis. More importantly, the study indicated the feasibility of loading OI-EVs into scaffolds and provided novel insights into biomaterial design for facilitating bone regeneration in the treatment of senescent bone defects. STATEMENT OF SIGNIFICANCE: Constructing OI-EVs/MBG delivering system and verification of its bone regeneration enhancement in senescent defect repair. Aging bone repair poses a huge challenge due to the age-related progressive degenerative decline in regenerative abilities attributed to the senescence of BMSCs. OI-EVs/MBG delivering system were expected as promising treatment for senescent bone repair, which could provide an effective strategy for bone regeneration in elderly patients. Clarification of potential OI-EVs lncRNA ceRNA regulatory mechanism in senescent bone regeneration OI-EVs play important roles through transferring lncRNA-ENSRNOG00000056625 sponging miR-1843a-5p that targeted Mob3a to activate YAP translocation into nucleus, ultimately alleviate senescence, promote proliferation and osteogenic differentiation in O-BMSCs, which provides theoretical basis for EVs-mediated therapy in future clinical works.


Assuntos
Vesículas Extracelulares , MicroRNAs , RNA Longo não Codificante , Humanos , Idoso , Osteogênese , Tecidos Suporte , RNA Longo não Codificante/genética , Regeneração Óssea , Diferenciação Celular , MicroRNAs/genética , Células da Medula Óssea , Vidro
13.
Photoacoustics ; 36: 100594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375332

RESUMO

In this article, a mid-infrared all-fiber light-induced thermoelastic spectroscopy (LITES) sensor based on a hollow-core anti-resonant fiber (HC-ARF) was reported for the first time. The HC-ARF was applied as a light transmission medium and gas chamber. The constructed all-fiber structure has merits of low loss, easy optical alignment, good system stability, reduced sensor size and cost. The mid-infrared transmission structure can be utilized to target the strongest gas absorption lines. The reversely-tapered SM1950 fiber and the HC-ARF were spatially butt-coupled with a V-shaped groove between the two fibers to facilitate gas entry. Carbon monoxide (CO) with an absorption line at 4291.50 cm-1 (2.33 µm) was chosen as the target gas to verify the sensing performance. The experimental results showed that the all-fiber LITES sensor based on HC-ARF had an excellent linear response to CO concentration. Allan deviation analysis indicated that the system had excellent long-term stability. A minimum detection limit (MDL) of 3.85 ppm can be obtained when the average time was 100 s.

14.
IEEE Trans Image Process ; 33: 1627-1642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329846

RESUMO

Domain generalization (DG) intends to train a model on multiple source domains to ensure that it can generalize well to an arbitrary unseen target domain. The acquisition of domain-invariant representations is pivotal for DG as they possess the ability to capture the inherent semantic information of the data, mitigate the influence of domain shift, and enhance the generalization capability of the model. Adopting multiple perspectives, such as the sample and the feature, proves to be effective. The sample perspective facilitates data augmentation through data manipulation techniques, whereas the feature perspective enables the extraction of meaningful generalization features. In this paper, we focus on improving the generalization ability of the model by compelling it to acquire domain-invariant representations from both the sample and feature perspectives by disentangling spurious correlations and enhancing potential correlations. 1) From the sample perspective, we develop a frequency restriction module, guiding the model to focus on the relevant correlations between object features and labels, thereby disentangling spurious correlations. 2) From the feature perspective, the simple Tail Interaction module implicitly enhances potential correlations among all samples from all source domains, facilitating the acquisition of domain-invariant representations across multiple domains for the model. The experimental results show that Convolutional Neural Networks (CNNs) or Multi-Layer Perceptrons (MLPs) with a strong baseline embedded with these two modules can achieve superior results, e.g., an average accuracy of 92.30% on Digits-DG. Source code is available at https://github.com/RubyHoho/DGeneralization.

15.
IEEE Trans Image Process ; 33: 1419-1431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358878

RESUMO

Deep learning has made significant advancements in supervised learning. However, models trained in this setting often face challenges due to domain shift between training and test sets, resulting in a significant drop in performance during testing. To address this issue, several domain generalization methods have been developed to learn robust and domain-invariant features from multiple training domains that can generalize well to unseen test domains. Data augmentation plays a crucial role in achieving this goal by enhancing the diversity of the training data. In this paper, inspired by the observation that normalizing an image with different statistics generated by different batches with various domains can perturb its feature, we propose a simple yet effective method called NormAUG (Normalization-guided Augmentation). Our method includes two paths: the main path and the auxiliary (augmented) path. During training, the auxiliary path includes multiple sub-paths, each corresponding to batch normalization for a single domain or a random combination of multiple domains. This introduces diverse information at the feature level and improves the generalization of the main path. Moreover, our NormAUG method effectively reduces the existing upper boundary for generalization based on theoretical perspectives. During the test stage, we leverage an ensemble strategy to combine the predictions from the auxiliary path of our model, further boosting performance. Extensive experiments are conducted on multiple benchmark datasets to validate the effectiveness of our proposed method.

16.
mBio ; 15(2): e0274923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193684

RESUMO

Microsporidia are obligate intracellular parasites that infect a wide variety of hosts including humans. Microsporidian spores possess a unique, highly specialized invasion apparatus involving the polar filament, polaroplast, and posterior vacuole. During spore germination, the polar filament is discharged out of the spore forming a hollow polar tube that transports the sporoplasm components including the nucleus into the host cell. Due to the complicated topological changes occurring in this process, the details of sporoplasm formation are not clear. Our data suggest that the limiting membrane of the nascent sporoplasm is formed by the polaroplast after microsporidian germination. Using electron microscopy and 1,1'-dioctadecyl-3,3,3',3' tetramethyl indocarbocyanine perchlorate staining, we describe that a large number of vesicles, nucleus, and other cytoplasm contents were transported out via the polar tube during spore germination, while the posterior vacuole and plasma membrane finally remained in the empty spore coat. Two Nosema bombycis sporoplasm surface proteins (NbTMP1 and NoboABCG1.1) were also found to localize in the region of the polaroplast and posterior vacuole in mature spores and in the discharged polar tube, which suggested that the polaroplast during transport through the polar tube became the limiting membrane of the sporoplasm. The analysis results of Golgi-tracker green and Golgi marker protein syntaxin 6 were also consistent with the model of the transported polaroplast derived from Golgi transformed into the nascent sporoplasm membrane.IMPORTANCEMicrosporidia, which are obligate intracellular pathogenic organisms, cause huge economic losses in agriculture and even threaten human health. The key to successful infection by the microsporidia is their unique invasion apparatus which includes the polar filament, polaroplast, and posterior vacuole. When the mature spore is activated to geminate, the polar filament uncoils and undergoes a rapid transition into the hollow polar tube that transports the sporoplasm components including the microsporidian nucleus into host cells. Details of the structural difference between the polar filament and polar tube, the process of cargo transport in extruded polar tube, and the formation of the sporoplasm membrane are still poorly understood. Herein, we verify that the polar filament evaginates to form the polar tube, which serves as a conduit for transporting the nucleus and other sporoplasm components. Furthermore, our results indicate that the transported polaroplast transforms into the sporoplasm membrane during spore germination. Our study provides new insights into the cargo transportation process of the polar tube and origin of the sporoplasm membrane, which provide important clarification of the microsporidian infection mechanism.


Assuntos
Microsporídios , Humanos , Esporos Fúngicos , Citoplasma , Microscopia Eletrônica , Membrana Celular , Bandagens
17.
Opt Express ; 32(1): 379-386, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175068

RESUMO

A novel dual-frequency modulated heterodyne quartz-enhanced photoacoustic spectroscopy (DFH-QEPAS) was demonstrated for what we believe to be the first time in this study. In traditional H-QEPAS, the frequency of modulated sinusoidal wave has a frequency difference (Δf) with the resonance frequency (f0) of a quartz tuning fork (QTF). Owing to the resonance characteristic of QTF, it cannot excite QTF to the strongest response. To achieve a stronger response, a sinusoidal wave with a frequency of f0 was added to the modulation wave to compose a dual-frequency modulation. Acetylene (C2H2) was chosen as the target gas to verify the sensor performance. The proposed DFH-QEPAS improved 4.05 times of signal-to-noise ratio (SNR) compared with the traditional H-QEPAS in the same environmental conditions.

18.
J Food Sci ; 89(1): 174-185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051023

RESUMO

In order to improve the emulsifying properties of soy protein around isoelectric point, soy protein isolate (SPI) and γ-polyglutamic acid (γ-PGA) complexes were prepared by electrostatic interaction. The formation of SPI-γ-PGA electrostatic complex and emulsifying properties were investigated by monitoring turbidity, zeta potential, intrinsic fluorophores, emulsion characterization, and microstructure observation. The results showed that the formation of SPI-γ-PGA electrostatic complex was identified through turbidimetric analysis and zeta-potential measurement. Intrinsic fluorescence spectrum indicated internal structure changes of electrostatic complexes. Furthermore, SPI-γ-PGA complex-stabilized emulsions showed better stability with small droplet sizes and slow growth as well as the uniform microstructure around the isoelectric point (pH 4.0-5.0) than SPI-formed emulsions. Under the different thermal treatments and ionic strengths, emulsions stabilized by SPI-γ-PGA-soluble complex resulted in improved emulsion stability to environmental stresses. This may be attributed to the increased steric repulsion and electrostatic repulsion by SPI-γ-PGA complexes at oil-water interfaces. The findings derived from this research would provide theoretical reference about SPI-γ-PGA electrostatic complex that can be applied in acid beverages and developed a novel plant-based sustainable stabilizer for emulsions. PRACTICAL APPLICATION: The electrostatic interaction between SPI and γ-PGA improved the emulsifying characteristics of soy protein around isoelectric point. The results derived from this research would expand applications of SPI-γ-PGA-soluble electrostatic complex that can be applied in acid beverages, as well as a novel plant-based sustainable stabilizer for emulsions.


Assuntos
Ácido Poliglutâmico , Proteínas de Soja , Emulsões/química , Proteínas de Soja/química , Eletricidade Estática , Emulsificantes/química
19.
Circulation ; 149(3): 227-250, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37961903

RESUMO

BACKGROUND: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS: Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS: Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS: ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.


Assuntos
Insuficiência Cardíaca , Camundongos , Animais , Cardiomegalia/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Ácidos Graxos/metabolismo
20.
Appl Environ Microbiol ; 90(1): e0164923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38108644

RESUMO

5-Hydroxymethfurural (5-HMF) is naturally found in a variety of foods and beverages and represents a main inhibitor in the lignocellulosic hydrolysates used for fermentation. This study investigated the impact of 5-HMF on the genomic stability and phenotypic plasticity of the yeast Saccharomyces cerevisiae. Using next-generation sequencing technology, we examined the genomic alterations of diploid S. cerevisiae isolates that were subcultured on a medium containing 1.2 g/L 5-HMF. We found that in 5-HMF-treated cells, the rates of chromosome aneuploidy, large deletions/duplications, and loss of heterozygosity were elevated compared with that in untreated cells. 5-HMF exposure had a mild impact on the rate of point mutations but altered the mutation spectrum. Contrary to what was observed in untreated cells, more monosomy than trisomy occurred in 5-HMF-treated cells. The aneuploidy mutant with monosomic chromosome IX was more resistant to 5-HMF than the diploid parent strain because of the enhanced activity of alcohol dehydrogenase. Finally, we found that overexpression of ADH6 and ZWF1 effectively stabilized the yeast genome under 5-HMF stress. Our findings not only elucidated the global effect of 5-HMF on the genomic integrity of yeast but also provided novel insights into how chromosomal instability drives the environmental adaptability of eukaryotic cells.IMPORTANCESingle-cell microorganisms are exposed to a range of stressors in both natural and industrial settings. This study investigated the effects of 5-hydroxymethfurural (5-HMF), a major inhibitor found in baked foods and lignocellulosic hydrolysates, on the chromosomal instability of yeast. We examined the mechanisms leading to the distinct patterns of 5-HMF-induced genomic alterations and discovered that chromosomal loss, typically viewed as detrimental to cell growth under most conditions, can contribute to yeast tolerance to 5-HMF. Our results increased the understanding of how specific stressors stimulate genomic plasticity and environmental adaptation in yeast.


Assuntos
Instabilidade Genômica , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Aneuploidia , Instabilidade Cromossômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...